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Front dynamics in the presence of spatiotemporal structured noises
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Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatiotemporal
structured noises. An effective deterministic model is analytical derived where the noise parameters, intensity,
correlation time, and correlation length appear explicitly. The different effects of these parameters are dis-
cussed for the Ginzburg-Landau and Sghimodels. We obtain an analytical expression for the front velocity
as a function of the noise parameters. Numerical simulation results are in a good agreement with the theoretical

predictions.
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I. INTRODUCTION techniqued6,7] to scaling argumentgl5], including a sto-

chastic version of the multiple scale analysis as well as a
The role of external fluctuations in extended systems is aonsystematic noise expansif@]. The last one may be the
subject of very active research because of its relevance imost simplified one that grasps the systematic contribution
pattern formation in nonequilibrium systerfls2]. A simple  of the noise to the dynamics of the system. This contribution
example of a dynamical pattern is a front moving at constantisually appears as a renormalization of the reaction param-
velocity. Fronts can be easily modelized by a reactioneters and it is the origin of the well known shift of the front
diffusion equation with two steady states of different stabil-velocity.
ity [3]. The study of the front dynamics under the influence The general aim of this paper is to find what are the most
of noises is relevant not only from theoretical point of view relevant effects of a real noise on two different models that
[4-9] but also from practical point as recent works on exhibit front propagation. We will see that for a fixed noise
chemical kinetics have shoWi0-13. In these experiments intensity, the noise correlation time is a relevant parameter
a chemical wave moves under the influence of an externahat interpolates the results of the white noise limit with
fluctuating illumination that is projected in the reactive me-those of the deterministic case, but the role of the correlation
dium. This external source of noise has finite intensity, cordength is different.
relation time, and correlation length. Thus, in this system we Here, we will derive an analytical expression of the effect
deal with spatiotemporal structured noise and not with sof a spatiotemporal structured noise on an extended system
white noise. The present work could be useful to clarify thegoverned by a Langevin reaction-diffusion equation with
role of these parameters on propagating structures as studiedlltiplicative noise. We will closely follow the guidelines
experimentally in10]. settled in[16] for a one variable system, and also those in
Previous studies dealt with this problem under the simpli{17] for multivariable system to deal with nonwhite noises in
fied assumption of whited-correlated external fluctuations extended systems. Our main difference is that our analysis is
[4-9]. Nevertheless one can ask about the correctness of thifone in the continuum space, and also that we present a more
assumption to modelize real noises. To answer this questiosjmplified way to get the first order contribution of the noise
at least it would be necessary to calculate the first contribuin the correlation timer, which avoid the integration of a
tions of the finite value external noise parameters. If theseesponse function. Here we note that the continuum Lange-
corrections are controlled then one can get confidence on then description may perfectly be adequate for describing re-
simplified assumption of white noise. active fronts even though chemical systems are discrete in
Since the early work of Schip et al. [14] on the effects nature, as was shown [18].
of fluctuations on a chemical interface, an intensive work has Our theoretical predictions have been applied to two sys-
been devoted to describe the related problem of front propaems: the Ginzburg-Landau and the Scgfilmodels. In the
gation in the presence of an external noise solde€9]. A first case the noise induces the front by controlling the sta-
complete study for the case of a white noise was presented inility of the new state versus the other unstable steady state.
[8,9] in which the front velocity and its diffusive dispersion In the second case, the noise does not change the steady state
behavior was computed in terms of the effective white noiseébut controls its dynamics.
intensity. It was found that the velocity of the front increases The outline of the paper is as follows. Section Il contains
with the noise intensity due to a systematic contribution tothe main theoretical results and a discussion of some limiting
the kinetic terms. Actually the dispersion is subdiffusive forcases. There we present the derivation of an effective dy-
the so calledpulled fronts, as has been shown recentl]. namical equation that grasps the systematic contribution of
A variety of approaches has been adopted, from projectiothe different noise parameters. In Sec. Ill, we apply these
results to obtain explicit predictions for the two models al-
ready mentioned and we discuss the numerical results ob-
*Corresponding author. Email address: msantos@etse.urv.es tained for them and their comparison with the analytical pre-
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dictions. In Sec. IV we summarize our conclusions.multiplicative character of the noise, althoughhas zero
Appendices are devoted to technical aspects of our analyticahean, this is not the case for this stochastic term,
methodology and the implementation of a particular algo-

rithm to generate a spatiotemporal structured noise. e"Hg(p(x.1) p(x,1)y=(®({y})) #0, (5

which, as a consequence, will give a net contribution to the
dynamics. This can be explicitly shown in the following

We consider the following stochastic partial differential way. By adding and substructinB({}) to our original dy-
equation as a representative description of reaction-diffusionamical equatiorfl), we can write this equation as
systems under multiplicative fluctuations:

Ip(x,t)

dP(X,t) ot
at

Il. EFFECTIVE DYNAMICAL MODEL

= L(P(X,1), 0y, @)+ D({y}) + 2R (¢, x, 1),

= L(P(x,1),0¢,8)+ () n(x,t), (D)

R(pxD=V(P) p(x.H—O({y}). (6
where/ is a reaction-diffusion operator that explicitly reads,
This dynamics is statistically equivalent to the original one.
(x,t) Note that for the new noise term it {R(#,x,t))=0 and it
L(p(X,1),dx,8)=D ———+1(4,a). (2)  has a correlation which can be developed in powers6f
X We make now the Ansatz that if the noise allows fowell
definite front structurgits systematic behavior will be de-

f(,a) andg(#) is the reaction term and the coupling term scribed by thedeterministicequation

with external fluctuations, respectively, ang(x,t) is a

Gau_ss_ian spatiotgmporal structured noise with the following a(x,t) P(x,t)
statistical properties, & P +O({y}) (7)
(n(x,1))=0 . . _
called theeffective dynamicsin Appendices A and B we
't )Y =G(|x—x'].|t—t’ present a detailed calculation df for small =, which is
(7" 1) 70x,0) =G x'|[t=t'] it
=C(Ix=x"Dy(|t=t"]). ()

[ ﬁw(x,t)
Also, for simplicity but not strictly necessary, we have made ®({y})=€DC(0)mg'g (T
the assumption that this correlation function factorizes in a
spatial and temporal part. To fix the notation, and followingwhere
the commonly accepted generic prescriptj@h we define
the three parameters of the noise, intensity, correlation time, h(y(x,t))=f(¥(x,t),a)+ e{C(0)

and correlation length, as follows: , )
+DC"(0)7hg(4(x,1)g" ((x,1))

2
+hg(x,1), (8

2= f “ds f drG(r.s), — €C(0) 79" ($(x, D)W D)), F((x,0))}
0 R
9
1 e . . . )
- _2f dsf drG(r.9)s, @ :Sthe new effective reaction term. The brackets are defined
g°Jo R
s {g,f}=g’'f—gf’, (10
2 2
A= szo dszdr G(r.s)r. and the primes ofi(¢) andg(#) indicate the derivative with
respect toyg.

We pursue here to find the systematic and most relevant Thus, we have ended up with one of the most important
effects of this type of noise. In general, the noise has twdesults of this paper Ed7), which contains the systematic
important effects, systematic and fluctuating ones, whicreontribution of the noise to our original dynamit® up to
cannot be exclusively associated with the deterministic andirst order inz. In this paper we will not study the effect of
stochastic terms of Eq1), respectively. In fact noise acts in R. This term is only relevant for those nonsystematic effects
two different scale§9]. Fast fluctuations in a short time scale of the noise, such as, the dispersion of the front. The depen-
modify the front shape and thus producing an effective frontlence on the parametaris included inC(0)~a*\ ! and
with different deterministic properties. On the other hand,C"(0)~o?\ 3. As will be seen belowC(0) is the most
the slow fluctuations are responsible for the diffusive disper+elevant quantity. Thus the main effect of the correlation
sion of the front position. length throughC(0) is trivial. For this reason we will pay

A naive way to get these systematic effects of the fluctuamore attention to the nontrivial influence of the te@fi(0)
tions is by analyzing the noise term in E@). Due to the fixing C(0) independent ok.
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A first check of the previous results will be provided by cases,D=1 anda=—0.1, except for the Schipp model,
considering the better known case of temporal white noise invhere different values od have been used.
a lattice. Here we will first define the proper limit by which ~ The noise is generated with a spatial and temporal struc-
Eq. (3) becomes a temporal white noise, and then see if Equre as a Gaussian random number at each lattice point. The

(7) correctly reproduces the results found in Réfl. correlation function factorizes as in E(). The temporal
The temporal white noise in time has a correlation, part has an exponential decéyrnstein-Uhlenbeck process
with a correlation timer, while the spatial correlations have

(n(X",t")n(x,1))=2C(x—x")&(t—t"), (1) atriangular shape with a correlation lengthThe numerical

implementation of such a noise is described in Appendix C.
The initial condition for the Ginzburg-Landau model is a
small pulse with a height of 0.01 and located at the middle of
the spatial domain. In this way the initial perturbation will
spread off as two fronts propagate in opposite directions. For
In a one-dimensional lattice this takes the form of the Schigl model the initial field is a steplike function of
value ¢(x,0)=1 within the left half, andi(x,0)=0 in the
) ] rest of the spatial domain. The numerical calculation of the
lim Cijzﬂ- (13 mean front velocity and the steady state behind the front
A0 have been done as in R¢20].

where the spatial white noise limit is given by

lim C(x—x")=8(x—x"). (12
A—0

In this limit one can see that all the integrals in E&8)

vanish except the first one. The systematic dynamics of Eq. A Linear coupling: The Ginzburg-Landau model
(7)2|S then that of the effective reaction term given now by  This model has already been considered in the context of
(0°=1) noise-induced front§20]. We will now study how that pic-

B , ture is modified by a spatiotemporal structured noise. For
h,,((x,))=F(¥(x,t),a)+ e(0)g(¥(x,t))g (¢(X1t))1(l4) this model the kinetic term is

[ 2
with (0)=eC(0)= e/Ax. f(y.a)=—y(a+y), (18)

In this way we have recovered the results found in Refand as a consequence, the noise coupling term is linear,
[8]. Note that one cannot consider right from the beginning a

white noise in space because the ill defin¥@). g(p)=¢. (19
The value ofC"(0) for a spatial white noise in the lattice ) ) ] )
is evaluated as We will have then that the effective dynamics given by
Eq.(7) is
C(1)—2C(0)+C(—1) 5
C"(0)= =— , (15 ap(x,t) _97P(x,1)
© (Ax)? (Ax)® 19 P P +h(p(x,1)) (20

where C(+1)=0 has been used. For the case of a spatia\INi,[h a new kinetic term(9) given now as
structured noise with\ finite, all the integrals in Eq(A8) 9

can be evaluated. h((x,t))=— ¢(a’+b’¢2), (21)
ll. APPLICATIONS AND NUMERICAL RESULTS where the new kinetic parameters are
We will now study the effects of a colored noise for two a'=a—€{C(0)+DC"(0)7}

particular types of couplingg(¢): a linear and a nonlinear

one, which correspond to the Ginzburg-Landau and $thlo b’ =1+2eC(0)7. (22)
models, respectively. The noise will enter in the standard

way [19] as small fluctuations of the control parameder Following the linear marginal stability criterig21], the

velocity of apulledfront is controlled by the linear term as
a—a+e’y(x,t), (16)
vi=2yD(—a’)

and thus the Langevin-type coupling function is given by

Jf (y,a) :2\/0

g(p(x,t))= PP (17)

—a+¢€(0)

DC"(0) ))
1+ WT . (23

Note thata’<0 in order to have a front. This result, how-
Numerical simulations of EqJ1) for the different models ever, has been deduced for a small enougNevertheless,
have been performed in a one-dimensional lattice of meskve can conjecture a generalization of E23) for any value
size Ax=0.5. The length of the systein=600. We have of 7 considering that the values of the velocity for0
used a Heun algorith2] with a time stepAt=0.01. In all  (temporal white noise limjtand for r=c (deterministic
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casg are known. In this way, the simplesgularizationof
Eg. (23), which is a monotonous function ox is

€(0)
DC"(0)
r

C(0)

—a+ (24

Moreover, Eq.(24) generalizes the temporal white noise re-
sult in terms on a renormalized noise intensity defined as

€(0)
DC"(0)
"o 7

ER= (25

which does not present any singularity because always

C"(0)<o0.

Taking €(0)= €C(0) as a constant we have the following
behavior. For increasing (\ fixed), e decreases, and we
arrive up to the deterministic value of. Nevertheless for
fixed 7 and increasing\.,C"(0)7/C(0)~ /A2, and theneg
increases, and as a consequenc@)creases up to the tem-
poral white noise limit. This is a nontrivial effect of that
needs a finite value of to appear.

As already discussed if20], another important quantity
in this model is the field behind the front that is induced by
the noise, and thus it is highly fluctuating. From E2{), the

PHYSICAL REVIEW E54 016129

v(T)

FIG. 1. Front mean velocity versus noise corelation timfer
the Ginzburg-Landau model in the presence of a Ornstein-
Uhlenbeck noise in time, white in space. Values of the parameters:
Circles correspond to the deterministic casg,,=0.62; triangles,
to €(0)=0.2, and squares, 10)=0.05; dashed lines are the ana-
lytical prediction up toO(7) Eq. (23), whereas continuous lines
represent the corrected predicti@4). See text for the values of the
other parameters.

homogeneous deterministic stationary value behind the froraur first order approximation succeeds to grasp this pro-

can be calculated as

_a/

X (26)

Y=

As we do not know how the higher order corrections on
b’ are, we expect a poorer agreement #r than for the
velocity. However, we can get an idea of the relevanck’of
by numerically inspecting the quotient of over i, that
depends omb’. Indeed, from Eqs(23) and(26), this depen-
dence is

*

1 v
(br)l/2:_ T i
2 0D
The analytical prediction&24), (26), and(27) are impor-

(27)

tant results of this paper that will be checked numerically.

Due to the different role of the noise parametemnd\ we
will discuss two cases separately.

1. Spatial white noise in the lattice

For this case all the simulations agree perfectly with the

theoretical results of Eq24). In fact, fixing the noise inten-
sity €(0) and increasingr, the mean velocity of the front
drops monotonously to the deterministic valisee Fig. L
All figures are in dimensionless units.

Our analytical calculatio{dashed linesonly describes
the corrections to the white noise case at oi@ér). How-

nounced slopésee inset of Fig. )l Moreover, the extended
analytical predictior{24) shows a very good agreement with
numerical data for all values af.

With respect to the average mean field, the agreement is
more qualitative(see Fig. 2 The numerical results for the
effective parameteb’, evaluated from Eq(27), are repre-
sented in Fig. 3. They support the initial growth lof pre-
dicted by the theory. For greater values of the correlation
timeb’ stays bounded by its deterministic valojg=1. This
fact may explain why numerical values @t; seem to de-

0.5

v, (D
0.4

0.3

FIG. 2. Mean stationary value of the field versusThe inset is

ever, this can be considered quite relevant as the dependengemplification of the smalt domain. See previous figure for the

of v and ¢ on 7 drops down very rapidly near=0, and

symbol notation.
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FIG. 3. Cubic term coefficient of the Ginzburg-Landau model as
the quotient ob to ¢ versusr. Notation is the same as in previous  FiG, 5. Front mean velocity versus for different correlation

figures. times. €(0)=0.2 for hollow triangles. Filled up-triangles corre-
_ o spond to the white noise case, while circles to the deterministic
pend only on the linear coefficieat . case. Squares correspond to the trivial noise effects with fixed noise

From previous wor20], we already know thai/s; has a intensity for7=0.05 and the long-dashed line is its theoretical pre-
systematic error that slightly increases with noise intensitydiction (24) (see text Each set of vertical points along the horizon-
Hence, the deviation found hef€ig. 3) is not due to the tal axes correspond, in increasing ordengfto m=0,1,2,3,4, re-
presence of temporal correlations, but a problem related tepectively. See Appendix C.
the fact that we are measuring a highly fluctuating quantity
as it isis;. In any case, our theoretical prediction is consis-a spatial white noisétriangles. This behavior can better be

tent qualitatively with numerical simulation results. appreciated in Fig. 5 where we have plotted the velocity
versus\ for different values of the correlation time.
2. Spatiotemporal structured noise According to our definition of\, Eq. (C8), we have that

N =0 for the spatial white noise in the lattice. Here it can be
een that our analytical scheme may qualitatively describe
he effects of a finitex only for small values ofr and \,

which is not the case fat=0 where the accordance is very

good. For a finiten, we have also observed a clear departure
from the analytical results in the case of the dependence on

f the mean stationary value of the field behind the front, as
ell as for the cubic coefficient. Also, the numerical results

how a systematic decrease of the velocity when increasing

the correlation length for=0, which is not predicted by our
analytical result$24).

On the other hand, for>0, the velocity tends to grow
with A for small correlation lengths as the theory predicts.
Indeed, this agrees with what we have observed in prelimi-
nary numerical simulations for a quenched white noise.
Hence, for increasing (7 fixed) the numerical results sug-
gest a nonmonotonous behavior of the velocity, which may
increase at smal, but would always decrease at long cor-
relation lengths.

We have not found yet an explanation for this effect. We
believe that there is an interplay between the correlation
length of the noise and the typical length of the front, which
is given by its width. Indeed, this effect could be related to
the observed distortion of the leading edge of the front and
0.6 : : : w the possible formation of a prefront in the presence of a large
spatial correlation length of the noise. Then our initial as-
sumption of a well defined mean front profile is not fulfilled

FIG. 4. Front mean velocity versus for different correlation and, as a consequence, the theoretical scheme cannot be ap-
lengths. Here it iss(0)=0.2. plied.

To study the nontrivial effects of a finite correlation
length on the dynamics of the front, we have to pay attentio
to the effects coming from the quanti§/’(0)~ o?/\ 3.

In Fig. 4 we can see the front velocity versu$or differ-
ent values of the correlation lengthof the noise. Continu-
ous lines correspond to the analytical predictigd). As can
be seen, for a finite correlation length the agreement is onl
qualitative, and improves for noises not too much away fromS

1.2 T T T

T
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For the sake of completeness, in this figure we also showelect a greater decay mode of the front, thus slowing down
what are the trivial effects of of a finite correlation length. In its propagatior{21]. Hence, the expected slowing down of
this case, the noise has been generated such that the notke front due to temporal correlations of the noise arises here
intensity o2, defined in Eq.(4), remains constant. This can in two ways: The first one is by means of the usual renor-
be acomplished by changing the previous weighting functiormalization of the coefficients of the reaction tefiny). The
g; by a factor (/2m+1)~! (see Appendix € Squares cor- second type of corrections come from the new Kadar-Parisi-
respond to the numerical resultis=€ 2400). The dashed line Zhang(KPZ)—like term.
is the theoretical predictiof24) for this case. As can be We expect that this front will exhibit the general regimes
seen, there is a monotonous decay of the velocity becaus# front propagatiorj21], i.e., a linear(pulled front), a non-
now the most dominant terra(0)~ o?/\ also decays with linear and a metastabl@oth, pushedfront) regimes. In the
\. Thus, the qualitative behavior is completely different.linear regime, the velocity depends only on the linear coef-
This confirms that the previous studied dependenceron ficient of the reaction terna’, and it is then given by Eq.
correspond indeed to montrivial effect of the correlation (24).
length. Note that our theoretical scheme succeeds better in While a crossover from a metastable to a nonlinear re-

describing quantitatively the trivial effects of a finite gime is trivial to determine, being nothing more than condi-
tion a’ =0, the transition between the linear and the nonlin-
B. Nonlinear coupling: The Schi@l model ear regimes is far more complicated to locate. This

_ - calculation of this point requires an analysis(afl) higher
A general model was introduced IBchia@l in [14] when  o4er terms of the reaction, determining a complete solution
studying the fluctuations of an interface. Here we will con-j, e comoving system and requiring then that the
sider a particular version of it that was studied in the pres;gymniotic behavior is such that the coefficient of the slow-
ence of an external white noise in RE8). It corresponds to gt decay mode vanishes.

the reaction term For the case of a temporal white noise, as was found in

_ _ [8,9], there is only a renormalization of the parameters of the

f(y.a) wgra) -1, 8 kinetic terms, in such a way that the effective dynamics is

which implies a nonlinear coupling with the noise, equivalent to the deterministic one up to a rescaling of the
coefficients. Hence, the location of the different regimes can

g((x,0)=¢(y—1). (29 be directly determined from those of the deterministic case.

Unfortunately, to our knowledge, the first procedure is hope-
Taking into account these definitions, the effective deter{ess for Eq.(30). Neither can this dynamic directly be com-

ministic part of Eq.(7) becomes, pared with the deterministic case. However, the transition
) between linear and nonlinear regime is always continuous
aP(x,t) I7P(x.t) and, as we can correctly describe the linear regime, this fact
5 D 2 +h(g(x,1)+De(0)72(2¢— 1) will help us to numerically locate the transition for this
model.
ap(x,t)\? Nevertheless, there is still some hope for an analytical
X X (30 prediction. The type of dynamics given by Ed80)—(32)

usually are relevant near the transition padrit=0, where
where the reaction term is the dynamics given by E@2) can be simplified by means of
an amplitude expansion. In this case, and as long as the noise
h(p(x,t))=a'y+b'y?+c'y*+5d'y*~2d"¢° (3D intensity is low enough, our effective equation would also lie
near thresholdq’ ~0). Assuming this situation, the spatial
variations of the field take place on a typical length scale of
orderq, '=\/D/a. A crossover between nonlinear and linear

with the effective kinetic parameters,

a'=atep, ) ; 3
R regime means that the nonlinear terms start to dominate the
b'=1-a+d'—3eg, growth rate of the initial steady state. Thus, this transition
takes place when both’ » andb’/? are of the same order
c'=—1-4d' +2ep, of magnitude. This will be the case for
d'=¢€(0)7, (32
Y~b';  b'?~a’. (33

wheree; was defined in Eq(25).

Our point of interest in this model is the mean front ve-
locity because the steady states for the fr¢nt0,1 are not Then the KPZ and thg* terms both will be of ordeq,
modified by the noise. Due to the prefactor of the KPZ-likewhile the termy(ay(x,t)/9x)? will be of orderqg. Hence,
term, for¢>1/2, any deviation from the homogeneous statenear threshold, only the first three terms of the effective re-
¢=1 tends to grow, while this is opposite at points whereaction (31) will be relevant. But this equation is just the
¥<1/2 for any deviation from the stat¢g=0. Thus, the standard Schigl model that is exactly solvable. This will
effect of this term is to shorten the width of the front, i.e., to have a sense only if it is’<0, which we will assume to be
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2 oy w . . the front mean velocity versus The inset shows the cases
' where a linear-nonlinear transition is expected. For all three
plots, the value of the deterministic linear coefficienis
such that the deterministic front lies right within the nonlin-
ear regime. While for the white noise case all fronts move
1 within the linear regime, the one fa@(0)=0.1 is only mar-
] ginally inside. Increasing then, the effective linear coeffi-
v 14 & ) | cienta’ decreases. For small values of the correlation time,
X s ) the fronts will still lie within the linear regime, except for the
€(0)=0.1 case, for which the front enters the nonlinear re-
gime immediately for any finite value af.

Thus for small values of the front moves with the linear
LN S 5 N | velocity. We can see that our first order approximation
e T T (dashed linesalso reproduces for this system the initial steep
fall of v. Our analytical continuation shows up a perfect

o £(0)=.3; a=.3
s g(0)=2; a=3
v £(0)=.1; a=.
> g(0)=.1; a=.

18

08, 1 > 3 4 5  agreement with the numerical results. By further increasing
< the correlation time we can shift the front into the nonlinear
] ] o regime.
FIG. ]6. Front mean velocity versus noise corelation timfer For this one we only have a rough approximation for the
the Schlgl model. Circles correspond to the deterministi , ; : ;
e sehigl m : P _ INiStic case.front mean velocity given by Eq36) (dot-dashed lines
Vg,sim= 1.131; dashed lines are the analytical results u®(@),  This annroximation is valid only near the critical poiat

whereas continuous lines represent the analytical corrected results .
v* Eq. (24). Dot-dashed lines correspond to the predictiG6). —0 and gets worse as we move away from it. Although our

The inset amplifies the domain of small By tuning 7, the front fc;l)naly5|§ glvhes us only lt_he(;:orrgctpns dgesto a gmlep .to
shifts from apulled regime to apushedone. This crossover corre- I(T)’ W'tht e.r.encl’rm‘?‘ e n0|se.|ntens(t2 .)’. anl staying
sponds to the points first leaving the theoretical curffeand are ¢ qse to t_ e crltlca point, we _obtaln a su_rprlsmg y good ana-
approximately given by the arrows. lytical estimation for the nonlinear velocity up to valuesrof

of orderO(1). One camotice that our predictions are just

so due to its expression in ER2). As stated above, we will O(7) seeing that the velocity diverges from the deterministic
also requires’ >0. The new stationary states of this approxi- value atr high enough. This is to be expected as in obtaining

mation are given by Eg. (36) we have used only a®(r) approximation for the
squaredb’ * and the stabilizing ternt’ ¢/°, with both b’
—b’ 4a’'c’ andc’ linearly increasing withr for high values ofr. But
lﬂtf(—,> 1xN/1-—17 . (349  this dependence is obviously incorrect as an infinite energy
2¢c b difference between two metastable states would give rise to

an unbounded propagation velocity, which is not the case.
The estimation of the crossing point between the linear
and the nonlinear regimes, given by the crossing point be-
he (WX, 1)=C"Y(p— ) (P— ), (35) tween the two curves?, and v*, is consistent with the
numerical results. At that point, these show up a pronounced

the velocity of a front connecting= ¢, and¢=0 is given  and increasing departure of the linear veloaity. For the

Fora’'c’<0 andb’>0, itis ¢, >¢_ . If we write then the
reaction term as

by [22] €(0)=0.1 case, the departure from the theoretical restilt
" starts already fotr>0. This can be best seen in the inset of
vn|=\/—2C’D[7+—¢]. (36)  Fig. 6.

Given the results found for the previous model, we expect IV. CONCLUSIONS

that our systent31) will present fronts in the linear regime We have studied a general reaction-diffusion system that
for a high enough noise intensig(0) and small enough.  exhibits fronts in the presence of spatiotemporal structured
Although we do not know the corrections df beyond external noise. We have derived an effective deterministic
O(7), we expect the velocity to start diverging from Eg4) dynamical equation for the front that contains the main ef-
for some finite value ofr. But, by adequately choosing the fects of the noise. These show up as renormalization of the
parameters, the transition between the linear and nonlineariginal reaction terms of the deterministic system and also
regimes can be obtained at small enough valuesfof our  new terms. The relevance of those effects are discussed for
approximations to be applicable. Hence, for values ofdhe two prototype models: The Ginzburg-Landau mo@®bise
near threshold, and within a neighborhood of the crossindinear coupling and the Schigl model(noise nonlinear cou-
point, the nonlinear velocity,; will approximately be given pling). Although our analysis is valid only for small correla-
by Eq. (36). tion times, we are able to grasp at least the main features of
We will show that numerical simulations support this the effects of a time colored noise on an extended system,
analysis. In Fig. 6 we have plotted the numerical results ohamely, that there is a pronounced slow down of the front
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velocity already for small but finite correlation times Sw(x,t)
We have obtained an analytical expression for the front Q(x,x’;t,t’)z%. (A3)
velocity in the linear regime that we have extended to be on(x',t")

valid for any value of the correlation timeof the noise. The . . . o
numerical simulations present an excellent agreement wit ollowing[16] and[17], we will consider the contribution of

the analytical results in this regime. For the nonlinear re- e noise at first order im in the approximation of smal.
This means that temporal correlation decays very strongly

gime, we can only give an approximate expression for th , . .
velocity, when the system is near threshold. Although it stille_fOr t'#t leaving relevant in Eq(B3) only the values of the

is valid only for 7 not too large, it goes beyond the first order !ntegrant fort’ close tot. Thus we may expan@(x,x’;t,t’)
ytorr 9 9 y powers of (' —t) aroundt’ =t and take all up to the first
rder

approximation considered in our analysis when the system id!

brought close enough to threshold. 0
Finally, we have obtained the nontrivial influence of the IQ

noise correlation length. Our results here are of a more lim-  Q(x,x’;t,t")=Q(x,x";t,t)+ — t'=t)+---.

ited validity, and this case needs a further study. Neverthe- at’ =t

less, our numerical results suggest a nontrivial behavior of (A4)

;{/Ci?h\/::\oicr:tcyr;,\‘/ag?ano\;a:;])gn\/geItQ(E:}it;Ovrvri?]La%Orl}ilrﬁ?eg;ha?]f(; r;?ﬂr;ﬂ'se’ln Appendix B we present a detailed derivation of this sec-

\. Previous reported studies evaluate only the trivial depenc-)nd term. . .

dence on of the front velocity, slowing down with increas- .NOW We can rearrange E_QAZ) In two terms, the_flrst one

being the zero order or white noise contribution, i.e, the one

ing correlation lengti23]. e get in the limitr— 0 for fixed e and\, while the second

Hence, we have shown that our procedure of separatin ne represents the contribution of the colored noise at first
the systematic contribution of the noise from the originalorder irFI)
Tl

dynamics gives reliable information for front dynamics in
the presence of spatiotemporal structured noises. The sys- (D(X,1)) =(Dg(x,1)) +{(DP1(X,1)). (A5)
tematization of the present procedure, if possible at all, and

its application to other situations would be extremely inter-Recollecting relationgA2), (A4) and (B4), (B7), and after
esting. calculating the spatial integral, we obtain

t
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[{g(z,/;(x,t)),f(w(x,t))}

ap(x,0H\? ft. ,
p ) Uodt G(0|t—t’])

X

. . . t
Humbolt Universita zu Berlin, where part of this work was X(t’—t)—Dg(z//(x,t))f dt’G"(0Jt—t'])
done. 0
APPENDIX A: ANALYTICAL DERIVATION OF THE X(t'—t) > ) (AB)
SYSTEMATIC EFFECTS OF A STRUCTURED NOISE

The systematic contributiod®(x,t)) of the noise is Where the primes orG(0,(t—t")) indicate derivatives of

given by G((x—x"),(t—t")) with respect tox’, evaluated ak’ =X,
and
D(x,1))=eYAg(h(x,1)) p(x,1)). (A1) )
{ ) ‘ol 7xt) {9 0), F (X, 0)}=9g" (g(x, 1) (g(x,1),a)
This average can be calculated by using Novikov's theorem =g, ((x.1),a).
in the following form,
(A7)
t
((I)(x,t))zel/ZJ dx’J dt’G(|x—x'],|t"—t]) As we are interested in the approximation of smalivhich
A 0 amounts to consider observation times much greater than the
Sp(x.t) characteristic correlation time of the noise, we can extend
><< g’(¢r(x,t))—'> ) (A2) then the limits of these integrals up @
on(x',t") At this point, further assumptions on the correlation func-

tion must be done in order to obtain any analytical predic-
Hence, the determination ¢fP(x,t)) reduces to that of the tion. Assuming thatG(x,s) factorizes as in Eq(3), the
response function above integrals can be written as
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t o2 bution (A9) to the systematic effect of the noise. Expanding
f dt'G(0,|t—t'|)=C(0)~T Q(x,x';t,t') in powers of ¢’ —t) aroundt’=t and taking
0 all up to the first order
2

t o°T
f dt' G(O]t—t'|)(t' ~1)= = 7C(0)~ ——
0

dQ
Q(x,x";t,t")=0Q(x,x";t,t)+ — t'—t)+---
a'l,_,

t 0'27' (BS)
fodtIGl/(o’|t_t/|)(t/_t):_TC!/(O)N)\_, (A8)

The second term can be obtained by directly deriving Eq.

(B3) with respect ta’. This gives
where the temporal pati(s) is considered to be normalized

to 1. dQ(x,x";t,t") t Ap(x,t") o
Finally, we can write T:Jt,dSI(X,S)—[ Py QXX st 1

(Po(x,1))=€C(0)(g(s(x, 1)) (#(x,1)),  (A9) (B6)

As long as we are interested in the linit—t, the details of
{g((x,1)), f((x, 1))} Z(x,s) are not important for the first term in EGB6) van-
ishes in that limit since it is a regular function & Fort’

(Py(x,1)=~ €C(0)7< 9’ (g(x,1))

P(X,t) =t, and substituting Eq.1),
—Dg”(¢(xt))( ) D
RUXD) - - (L((X,1),0x,2)
+eDC"(0) 79’ (PO, DIWXD)).  (AL0) A k) |, o
APPENDIX B: RESPONSE FUNCTION + X2 (h(x,1) (x,1)) (ﬁ_li(x t)

The determination of®(x,t)) reduces to that of the re-
sponse function

2" (p(x,1)) n(x t))Q(x x';t0).
Lt Sy (x.1) B1
Qx,x";t,t") S 1) (B1) (B7)
i o Considering the initial conditioriB4) and substituting the
The meaning of Eq(1) is given by expression of the nonlineddifferentia) operator given by
Eqg. (1), the last relation reduces to

t+ At
Pt AL — (X, 1) = Jt dsL(¥(X,S),dy,a)

IQUXLE)
t+At at’ ,
+el/2J ds o((x,8)) 7(x,8), vt
' ="’ (PO Wx1),2)— g (Y(x,1),2)]
(®2 2P (x,t)
and as long as>0, the last integral is well defined as a X5(X'_X)+D'~‘1/2[9,(‘”(“))( o2 )50( —X)
Riemann integral. By taking the functional derivate of Eq.
(B2) with respect to the noise(x’,t") we get 52
- ?[g(t/f(x.t))rS(X’ —X)]} - (B8)

t L
Q(x,x’;t,t’)=Q(x,x’;t’,t’)+Jt [al//(x S)

The second order derivative of the last term gives

+61’29’(t//(x,3))77(x,8)]Q(X.X’;s,t’); (Xt P2
i) WD) uix t))( o )> 5(x' =x)
t>t" (B3)
(X, 1)\ d6(X" —Xx)
with +29" (¥(x, t))( ) X
QUx.x";t,)=€e"g(p(x,1)o(x' —x). (B4 28X —x)
Equation(B3) is an integrodifferential equation for the re- Tox.n) IX? ' (B9)

sponse function for which it has not yet been found a formal
solution as it was ifi16] and[17] for nonspatially dependent With this result in mind, the Laplacian terms in E@B8)
(zero-dimensionalsystems. The terrB4) gives the contri- mutually cancel, while the terms proportional to thegive
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rise to the first integral in Eq/A6). Taken into account the in terms of a Gaussian white noise with a correlation,
following relation of the derivative of &

S
J J (&G(t)g (1) =207 o(t—t"). (C4)
&6(x’—x)=— — (X" —Xx) (B10) -
X In this case the correlation of the noigg(t), is given by
the contribution to Eq(A2) of the first and second order T (S) (0 =G (s)=C (8],
derivative of thes in (B9) will be {m-+(s)7;(0)) 2'( ) (sl
(o
t IP(X,t _ W —lsl/r
—f dt'| 26" O t—t g’ ((x,0) LY V(ls))=—e 7, (C5)
0 ox
=
+G"(0,(t=t")g(¥(x,1) |(t'—1). (B11) AXC

Being G already factorized, the linear transformatic®l)
assures that the correlation function gf(t) will be of the
desired form(3). As g is arbitrary, we are free to impose the

condition that the value 06,(0) equals that 050(0), i.e,

This result give rise to the last terms in E&10), where
the contribution proportional t&'(0,(t—t')) has been dis-
carded because of the spatial isotropy of the noise.

APPENDIX C: NUMERICAL ALGORITHM Go(0)=Go(0). (C6)
FOR GENERATING A SPATIOTEMPORAL
COLORED NOISE Here we are interested igy having a finite range, for sim-

. . ) . plicity, we assume thag; is a constang inside the interval
Here, we will define a spatiotemporal structured noise that- ;< <m, but zero otherwise. Then the conditit®6) im-
is very simple to implement numerically, and which is the plies g, =[Axy(2m+1)] L. Now it is a simple calculation

one we have used in this work. This type of noise is obtained, show thaty(t) is a spatiotemporal structured noise with a
by rewriting the spectral methd@] as a linear transforma- correlation

tion of a more simple noise field in real space. o
We define our spatiotemporal colored noise in each lattice Co
cell i and at timet, as Gi=Ci¥(|s])= 2m+D [2m+1—[I[To(2m—]I]) ¥(|s]).

(C7)

At equal lattice points this function decays exponentially
in time, and at equal times it has a triangular decay as a
where the index labels a domain of cells around the cell  function of lattice point difference. From this analytical ex-
andg; is a weighting distribution with the isotropic property pression it is straightforward to obtain the noise intensity and
9.1=0. (%) correlation length,

m(t)EAXEi 700G, (C

- . . . o?=(2m+1)a?
7i(t) is an Ornstein-Uhlenbeck process in the lattice cell

i, statistically independent of the other lattice poiftushite _ /2
noise in space Its value is generated through the linear A= §m(m+1)Ax, (C8)
Langevin equation,

being the correlation time. One can check now that in the

am(t) E_-(I)Jr Eg-(t) (c3 lattice white noise limitm=0 ando?=¢2, and therh =0.
a7 7o Form=1, we get thah =1.15 .. .Ax.
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